
Supplemental Information 

Websites of sampled areas and their dominant vegetation: 
 
Florida: http://ordway-swisher.ufl.edu.  Sandhill community consisting of sparse 

longleaf pine/wiregrass savannah. 

Hawai’i: http://www.hippnet.hawaii.edu. Laupāhoehoe Natural Area Reserve. 

Metrosideros polymorpha is the main canopy dominant, with very minor Acacia 

koa. 

Alaska: 

http://savanna.lternet.edu/site/research_site.php?site=bnz&research_site_id=252 

Caribou-Poker Creek site. The vegetation is black spruce 

(Picea mariana) muskeg (acidic bog land with spaghum moss and reindeer 

lichen ground cover). http://www.lter.uaf.edu/bnz_vegetation.cfm for vegetation 

description of the region. 

Utah: http://www.czen.org/content/domain-15-great-basin-onaqui-benmore. 

Extensive sagebrush steppe transitioning into juniper woodland. 

 

nifH_tit reference set: A set of reference nifH sequences was constructed for 

use in FrameBot development as follows: We downloaded all available (1222) 

nifH bacterial isolates’ protein and corresponding DNA sequences from the 

December 2011 release of the FunGene “nifH_tit” dataset, which contains only 

the nifH region amplified by the Poly nifH primers (internal to the primer binding 

region) (1). We clustered the protein sequences using the RDP mcClust program 

(http://fungene.cme.msu.edu) implementing the complete linkage algorithm. We 



chose one reference sequence from each of the resulting 204 clusters formed at 

90% protein identity and used these as the reference set for initial development 

and for testing the metric indexing strategy. This set contains representatives of 

all three nifH groups (I-III) and of the “nifH-like” sequences (group V-IV; Table 

S4). This reference set was used for nifH defined community analysis and for 

initial Metric Indexing development as described below. 

 

Metric Indexing Speedup: For reading frame correction with nifH amplicon data, 

a small set of references can provide a reasonably close match to all query 

reads. However, we wanted to use a much larger reference set for assigning 

reads to nearest neighbors. Comparing each query to each member of a large 

reference set would slow FrameBot in proportion to the number of reference 

sequences. To speed up FrameBot, we applied the AESA metric indexing 

algorithm (2) in order to reduce the number of comparisons. This strategy 

involves pre-computing the edit distances between all pairs of reference 

sequences and making an initial estimate, Dm, of the maximum distance 

expected between members of the gene family (this estimate can be arbitrarily 

large with only a minor effect on performance). Then for a query Q, the distance 

between Q and a starting reference R (which may be chosen randomly), d(R,Q), 

is computed. If Dm > d(R,Q), Dm is replaced with d(R,Q). Only references with 

distances to R in the range of d(R,Q)+/-Dm are then retained, thus reducing the 

search space. A new R is chosen from among the remaining references and the 

process is repeated until only the closest match(es) remain.   



 

For such a strategy, the distance measure used normally must meet the 

requirements for a metric distance, most importantly the triangle inequality. The 

distance between two sequences in a simple alignment (edit or Levenshtein 

distance) is metric. If different substitutions are given different costs, then the 

complex edit distance is metric only if the substitution costs are metric (3). It turns 

out that the Blosum matrices are not metric, but small adjustments to these 

matrices can be introduced to make them metric. We used such a modified 

Blosum 62 matrix when using FrameBot with a metric index (4). The resulting 

alignment score from FrameBot is then metric as long as there are no 

frameshifts, or as long as the frameshifts are in identical positions for all 

comparisons. However, it can easily be shown that changes in the position of 

inferred frameshifts can cause the resulting distances to violate the triangle 

inequality. We hypothesized that this violation would be rare in practice and 

tested this. 

 

First we compared the results of using FrameBot with the standard Blosum 62 

and metric Blosum 62 matrices (without index). For this we used the nifH_tit 

reference set. We selected 1000 sequences from the NEON dataset as a query 

set. For each scoring matrix, we exhaustively compared each query to all the 

reference sequences to find (one of) the closest match(es). Although in only 7% 

of trials was the closest match to a query the same for both matrices, in 91% of 

the trials, the nearest reference found using the two matrices had the same 



percent amino acid identity with the query. In the remaining cases there was, on 

average, a difference of 1.3 amino acid mismatches between the nearest match 

found using the two matrices. As the difference sometimes favored each matrix, 

and as the difference was small, we considered the performance using the two 

matrices to be similar, as was previously concluded (4). 

 

We then tested whether frameshifts would prevent the metric index from 

returning the closest match found by exhaustive comparison. In our initial trial, for 

97.5% of the queries the indexing strategy returned (one of) the best match(es). 

For the remaining 2.5% of the queries, the indexing approach returned a more 

distant sequence, presumably because the inferred frameshift positions on some 

of the references chosen for comparison were not the same as those inferred in 

the comparison to the best match, hence leading to a violation of the triangle 

inequality. We reasoned that such a change in frameshift was more likely in 

comparisons with references distant from the query read, and that the errors 

were likely relatively small compared to this distance, so that by slightly 

increasing Dm at each step, we could avoid this problem. We randomly chose 

three sets of 1000 sequences from the NEON samples and determined that by 

slightly increasing the Dm used at each step by a fraction (0.2) of the distance 

d(RQ), we could avoid this problem for these test cases but still greatly reduce 

the number of comparisons. We then validated the performance using the 

augmented Zehr reference set on an additional randomly chosen subset of the 

NEON data (1000 reads). Fewer than 5% of the references, on average, were 



compared to find the closest match and, for all 1000 trials, the same or an 

identically scoring closest match was found by exhaustive comparison, validating 

the indexing strategy. 

 

but and bphA Amplicon Read Initial Processing: Amplicon reads from two 

barcoded bphA samples were processed with the same parameters as for nifH 

except using the bphA defined community as reference for FrameBot. Amplicon 

reads from three barcoded but samples were processed with the same 

parameters as for nifH except using the but defined community as reference sets 

for FrameBot. Reads from the three but samples that passed the initial 

processing steps were separated into groups by closest matching defined 

community protein sequence using FrameBot. Only two groups of 698 reads in 

total from the two Roseburia strains were used for additional analysis because 

few reads were obtained from the other defined community members. 

 

FragGeneScan and HMMFrame: FragGeneScan v.1.14 (5) was run with error 

model parameter matching the measured error rates as closely as possible, e.g., 

train_file_name “454_5” for the nifH and bphA defined community with error rates 

of about 0.5%, or “454_10” for the but defined community with error rates of 

about 1%. For some reason, FragGeneScan did not return the last amino acid for 

the vast majority of sequences in every dataset we tested. Since we believed this 

might be a minor programming error, we did not count this as a deletion error 

when comparing to the expected protein sequence. Also, since FragGeneScan 



was originally developed as a gene finding tool, it sometimes, but not always, 

reported multiple partial sequences from a single query sequence when 

substitutions led to stop codons. This occurred, on average, less than 10 times 

per sample. These partial sequences from one query were concatenated prior to 

error analysis.  

 

HMMFrame (6) was trained on three sets of sequences: the augmented Zehr 

reference set, a subset from Group I, II and III, and a subset from Group I only. 

HMMFrame was run using the default parameters. For the but gene, HMMFrame 

was trained on 10 high quality but sequences manually selected based on 

annotation and biochemical evidence. For the bphA gene HMMFrame was 

trained on 170 sequences selected from FunGene. 

 

The bphA amplicon was too long for sequencing to read through to the reverse 

primer. The above quality filtering parameters were used except for reverse 

primer testing.  All the reads shared at least 96% protein identity to one of the 

two defined community strains after frameshift correction with FrameBot.  

 

AmpliconNoise: the nifH defined community reads were first filtered using the 

perl script “FlowsMinMax.pl” with primer input parameter 

“'ATCAGACACGTGCGA(C|T)CC(G|C)AA(A|G)GC(C|G|T)GACTC”  (the 10 bp 

barcode and Poly nifH forward primer sequence), followed by the standard 

analysis pipeline: shell script test/run.sh. Both scripts are included with 



AmpliconNoise v1.2 package (7). We found that as provided the shell script 

run.sh truncated all sequences to 220 bases. We modified the script to not 

truncate the sequences. The representative sequences returned by the 

AmpliconNoise were then processed by RDP Pyro Initial Process tool (8) only to 

remove barcode and forward primer. The reverse primer was not checked on 

these sequences since many had been truncated. These reads were subjected 

to frameshift-correction by FrameBot. 
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